The best Diophantine approximations: the
نویسنده
چکیده
This brief survey deals with multi-dimensional Diophantine approximations in sense of linear form and with simultaneous Diophantine approximations. We discuss the phenomenon of degenerate dimension of linear sub-spaces generated by the best Diophantine approximations. Originally most of these results have been established by the author in [14, 15, 16, 17, 18]. Here we collect all of them together and give some new formulations. In contrast to our previous survey [17], this paper contains a wider number of results, especially dealing with the best Diophantine approximations. It also includes proofs or sometimes the sketches of proofs. Some applications of these results and methods to the theory of small denominators can be found in [14, 19] and [13]. §1. The best Diophantine approximations in sense of linear form. 1.1 Notation.
منابع مشابه
Best Simultaneous Diophantine Approximations under a Constraint on the Denominator
We investigate the problem of best simultaneous Diophantine approximation under a constraint on the denominator, as proposed by Jurkat. New lower estimates for optimal approximation constants are given in terms of critical determinants of suitable star bodies. Tools are results on simultaneous Diophantine approximation of rationals by rationals with smaller denominator. Finally, the approximati...
متن کاملContinued Fractions, Diophantine Approximations, and Design of Color Transforms
We study a problem of approximate computation of color transforms (with real and possibly irrational factors) using integer arithmetics. We show that precision of such computations can be significantly improved if we allow input or output variables to be scaled by some constant. The problem of finding such a constant turns out to be related to the classic Diophantine approximation problem. We u...
متن کاملTest Sets of the Knapsack Problem and Simultaneous Diophantine Approximations
This paper deals with the study of test sets of the knapsack problem and simultaneous diophantine approximation. The Graver test set of the knapsack problem can be derived from minimal integral solutions of linear diophantine equations. We present best possible inequalities that must be satisfied by all minimal integral solutions of a linear diophantine equation and prove that for the correspon...
متن کاملSuccessive Minima and Best Simultaneous Diophantine Approximations
We study the problem of best approximations of a vector α ∈ R n by rational vectors of a lattice Λ ⊂ R whose common denominator is bounded. To this end we introduce successive minima for a periodic lattice structure and extend some classical results from geometry of numbers to this structure. This leads to bounds for the best approximation problem which generalize and improve former results.
متن کاملt-BEST APPROXIMATION IN FUZZY NORMED SPACES
The main purpose of this paper is to find t-best approximations in fuzzy normed spaces. We introduce the notions of t-proximinal sets and F-approximations and prove some interesting theorems. In particular, we investigate the set of all t-best approximations to an element from a set.
متن کامل